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FINITE ELEMENT MODEL OF ASYMMETRICAL
ROTOR-BE"ARING SYSTEMS

Yang-Gyu Jei" and Chong-Won Lee"

(Recei/led September 10, 1988)

Recently, the finite element method has been successfully used in rotor dynamic analysis. However, the previous works have been
restricted to ax i-symmetrical rotor-bearing systems. This paper extends the previous finite element modeling to include asym­
metrical rotor-bearing systems, consisting of rigid disks, finite shaft elements with distributed mass and elast.icity, and discrete
bearings. Th= finite element. model developed includes the effects of rotary inertia, gyroscopic moment.. transverse shear deforma­
tion, internal damping and gravity. The dynamic analysis of multiple shaft rotor-bearing systems modeled by finite element method
requires the :;olution of large order sets of linearized differential equations of motion. To reduce the size of the resulting matrices,
the modal t.ransform technique is applied. Finally t.he accuracy of the finite element model and the modal transform technique is
demonstrated.
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1. INTRODUCTION

The vibrations of asymmetrical rotor-bearing systems have
been extensively investigated, but most works have consid­
ered only simple models such as a uniform shaft and a single
disk mounted on massless shaft (Taylor and Schenectady,
1940, Foote et aI., 1943, Dimentberg, 1961, Tondl, 1961,
Yamamoto et al. 1968, Ardyfio and Frohrib, 1976). The
general method, therefore, for asymmetrical rotor-bearing
systems which consist of rigid disks, shaft with distributed
mass and elasticity, and discrete bearings is necessary in
order to answer to the practical vibration problems.

The transfer matrix method has been a popular numerical
method for the analysis of general rotor-bearing systems
(Lund and Orcutt, 1967, Lund, 1974). This method has the
advantage of small computer memory requirements, but the
equations of motion using such a procedure are not explicitly
written. In 1980 Inagaki et al. formulated the transfer matrix
model for asymmetrical rotor-bearing systems and
introduced the Harmonic Balance Method to solve the result­
ing equation having periodic coefficients. But in their study,
the uniformly distributed rotary inertia and gyroscopic
effects of the shaft were neglected, and only the major critical
speeds and synchronous whirling vibrations near major criti­
cal speeds were evaluated.

Recently, t.he finite element method has been successfully
applied to axi-symmetrical rotor-bearing systems (Gasch,
1976, Nelson and McVaugh, 1976, Hashish and Sankar, 1984).
Since the system equations of motion derived from the finite
element procedure are explicitly written, the additional
details such as bearing flexibilities and input excitations can
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be easily incorporated in the formulation. And the effects of
axial load (Nelson and McVaugh, 1976), internal damping
(Zorzi and Nelson, 1977) and shear deformation (Nelson, 1980)
can also be considered in finite element formulation. In this
paper, a finite element model for asymmetrical rotor-bearing
systems is developed in rotating coordinates. The model
includes the effects of rotary inertia, gyroscopic moment,
transverse shear deformation, int.ernal damping and gravity.

The dynamic analysis of multiple shaft rotor-bearing sys­
tems modeled by finite element method requires the solution
of large order sets of linearized differential equations of
motion. Such large order :iystems are costly to solve in terms
of computer time and storage. Among various matrix reduc­
tion t.echniques (Rouch and Kao, 1980, Glasgow and Nelson,
1980. Kim and Lee, 1986), the modal transform technique
(Kim and Lee, 1986) was successfully applied to the axi­
symmetrical rotor-bearing system, showing that it can be
used to predict whirl speeds and unbalance response with
reasonably high accuracy and to provide the reduced com­
puter time and storage requirements. Here the modal trans­
form technique is applied to the asymmetrical rotor-bearing
system.

The computer program developed is capable of calculating
the major critical speeds, the forward and backward whirl
speeds, the corresponding mode shapes, the forced responses,
and the instability regions. The accuracy of the finite element
model and the sensitivity to the modal truncation are demon­
strated.

2. EQUATIONS OF MOTION

One of the advantages of the finite element method resides
in its suitability for the automatic formation of the system
equations with the separately developed component equa­
tions. Since the governing equations of asymmetrical rotor

'il
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The degree of asymmetry of a rigid disk, Ed, is often defined
as

where pIf, pI! are the moments of inertia about the principal
axes of the cross section. When Ed = 0, Eq. (2) becomes identi­
cal to Eq. (6) in Nelson and McVaugh(1976) except the selec­
tion of the displacement vector.

(5)

2.2 Finite Shaft Element
A typical axial asymmetrical shaft element and its coordi­

nates are illustrated in Fig. 1. The finite shaft element here is
considered to be the rotating uniform Timoshenko beam
which includes transverse shear deformations. The shaft is
modeled as an eight degree-of-freedom element with two
translations and two rotations at each end of the element. It
should be noted that the element cross section displacements
(11" "', 118) are functions of time and distance, X, along its
axis. The rotations (B, r) and translations (Y, Z) as­
sociated with the bending deformation of the cross-section
are related by

-1
o
o '
o

2.1 Rigid Disk
The kinetic energy of an axial asymmetrical rigid disk

with the mass center coincident with its geometric center is
given as

system in stationary coordinates are of periodical1y varying
coefficients, the governing equations are conveniently expres­
sed in rotating coordinates instead of stationary coordinates.
Here the coordinate systems developed in lei and Lee(1987a)
and ]ei(l988) are adopted. The S: oxyz triad is a stationary
reference fixed on the ground, whereas the R: OXYZ triad is
a rotating reference defined relative to the S: oxyz triad by
single rotation Qt about x axis, Q being spin speed. The body
attached coordinates A: Oabc is attached to the cross section
with the a axis normal to the cross section. The x, X and a
axes are collinear and coincident with the undeformed rotor
center line. The deformation of the cross section at an axial
distance X are described by the translation Y (X, t) and Z
(X, t) in Y and Z directions, respectively, to locate the
elastic center line and by the small angular rotation B (X,
tJ and r (X, t) about Y and Z directions, respectively, to
orient the plane of the cross section. The equations of motion
for the rigid disk and the finite shaft element are developed
using Lagrangian formulation. The bearing equations are not
developed here and only the linearized form of the equations
as treated in Lund and Orcutt(1967) and Nelson(1976) is
utilized.

r=Lmd{( Y-QZ)2+ (Z+f2YJ2)
2

+ }(p]1(J)i+pIf(J)~+pU(J)~) -plyz(J)y(J)z

where m d is the mass, p]1, pIf, pI! and plfz the mass moments
of inertia of the rigid disk, and (J)x, (J)y and (J)z the angular
rates of the deformed cross section relative to R: OX YZ,
respectively. Superscript d denotes the rigid disk. Applica­
tions of Lagrange's equations yield 4 simultaneous second
order differential equations with respect to Y, Z, Band r.
The resulting linearized equations then become

(2)

The subscript b is associated with the bending deformation of
a Timoshenko beam. The translation of a typical cross­
section internal to the element may be represented by

(7)

where the spatial constraint matrix, R, is given by

(8)

and

In the horizontal asymmetrical rotor, the force due to the
weight of the disk causes, in particular, the second order
vibration (Bishop and Parkinson, 1965), i.e.,

where the terms on the left are related to the relative accelera­
tilm, the Coriolis ac.:eleration plus gyroscopic moment, and the
centripetal acceleration, respectively. The matrices of M d

, G d
,

N d and qd are listed in Appendix A. The generalized force
vector Qd includes the forces due to the unbalance and the
weight of the disk. Notice that, in rotating coordinates, the
mass unbalance is constant. For the mass center located at
(V,ff, Z~) relative to R: OXYZ, the force due to the un­
balance is

x

(4)

(3)

Q: = Q:!cos Qt + Qfsin Qt

where Fig-. 1 Coordinates of finite shaft element
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The rotation can be similarly expressed in the form

{~}=Cqe

where the spatial constraint matrix, C, is given by

(9)

axes of A: Oabc, Me, K e and C e are also provided in
Appendix B.

The undamped finite shaft element model of Eq. (13) can be
extended to include the linear internal damping. The effects
of internal damping may be incorporated into viscous and
hysteretic damping forms. The hysteretic damping effect
couples the flexural bending moments such that (Lund and
Orcutt, 1967, Hashish and Sankar, 1984)

C=[Cy, Cyz Cy, Cy, 0 0 0 0]
o 0 0 0 Cz, CZ 2 CZ 3 Cz, .

(10) [
Mz] = [ Elzcos /h Elzsin /h][r]
My - Elysin /h Elycos /h B'

(14)

The shape functions, Yi and Ci(i = 1, 2, 3, 4), established by
Hashish(l984) for an axi-symmetrical Timoshenko beam
element, are employed in this study and provided in Appendix
FJ.

The kinetic energy of the finite shaft element consists of
both translational and rotational terms. When the principal
axes of the cross section are coincident with the" b" and" c"
axes of the body attached coordinates, Oabc, the kinetic
energy of the differential shaft element located at X then
becomes

where the loss angle /h is related to the loss factor T/h by

The linear velocity dependent viscous form of internal damp­
ing is represented as a simple dashpot model with a damping

coefficient T/v. The relationship between bending strain Ex

and bending stress Ox due to internal viscous damping is given
by (Zorzi and Nelson, 1980, Ozguven and Ozkan, 1984)

The relationship between the viscous damping and the flexur­
al bending moments becomes

Since the angle /h is practically very small, the stiffness
matrix modification by the factor cos /h should not be signifi­
cant on the rotor behavior. But the nonconservative moments
in the off-diagonal terms in Eq. (14) are the significant factor
affecting stability. From Eqs. (14) and (16), the differential
potential energy and the nonconservative works are given as

rlT"= }pAe{( y - ,52Z)'+ (.2' +,52Y) '}dX

+ ~-(pI:(j)~+pIi(j)~+pI:(j)D dX

where pA e is the element mass per unit length and pI:. pIi
and pIi are the mass moments of inertia of the finite shaft
element about (X, Y, Z) axes, respectively. Superscript e
denotes the finite shaft element.

The elastic potential energy of the element consists of
elastic bending and shear energy. When the principal axes of
the cross section are coincident with the" b" and" c" axes of
the body attached coordinates, the differential potential
energy function then becomes

Ox=T/uEE x.

[Mz] [Elz 0 ][I"]
My = T/v 0 Ely B' .

(15)

(16)

1 { ( ar )2 ( aB )'}ripe = -2 ElzJX +Ely -ax dX

+~-k'NG{(~;- B)'+(-~~ - r ndX (12)

dpe = tcos /h (ELr' +ElyB") dX

dWnc=-l'bu(ElzI"dr+ElyB'dB')

+sin /h (ElzB' or' - EIyr' oS) }dX.

(17)

where k' is the shear form factor and G is the shear modulus.
The shear form factor k' is given by 7.8/8.8 for solid circular
cross-section shafts, and 13.0/15.3 for solid rectangular cross­
section shafts, respectively (Cowper, 1966).

The total kinetic and potential energy is obtained by inte­
grating Eqs. (11) and (12) over the length of the element. By
the use of Lagrangian formulation, the equation of motion of
a finite shaft element can be obtained as, using Eqs. (7) and
(9).

(13)

where

K"=K%+K%

and the subscript band 5 denote the bending and the shear
stiffness of a Timoshenko beam, respectively_ The symmetric
matrices, Me and K e , and the skew-symmetric matrix, C e ,

are provided in detail in Appendix B. When the principal
axes of the cross section are not coincident with" b" and" c"

The total potential energy of the finite shaft element with a
length t are given as, using Eq. (9),

(18)

The model expressed by Eq. (18) does not include the effects
of transverse shear deformations. The effects of shear defor­
mations can easily be included in the model by replacing the
stiffness matrix K% in Eq. (18) by K e(= K%+ Kff) (Ozguven
and Ozkan, 1984). Using Lagrangian formulation the equation
of motion of a finite shaft element including the effects of
internal damping and transverse shear deformation can be
obtained as

Meije+ (,52C e+ T/vKe) qe
+ (cos 'hKe+sin /hK eS-,52'N e) qe= Qe (19)

where S = [ 0 []. ,and [ is the 4 x 4 identity matrix. The
-[ 0 8'8

force vector Qe in Eq. (19) includes the forces resulting from
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the unbalance and the weight of shaft. For an element with its
distributed mass center eccentricity (Y,;i (X). Z::' (X) ), the
equivalent unbalance force, utilizing the consistent matrix
approach (Nelson and McVaugh, 1976), is

(20)

coordinates, consisting of component equations of (4), (19) and
(24), is of the form

MSii"+ (cs+QG S) qS+ (Ks+QDs-Q'NS) qS= Q
(25)

where

The equivalent forces in Eq. (20) are presented in Appendix B.
The force resulting from the shaft weight with distributed
mass are, in rotating coordinates,

By assuming a linear distribution of the mass center location
along the shaft element, the eccentricity in Y and Z direc­
tions for a differential disk located at a distance X can be
written as

Y,;i(X) = Y,;i(Q) ( 1-?,)+ Y,;i(i')?

Z::'(X) = Z;i,(Q){1--}')+Z::'W1. (21)

The whirl speed at given speed can be determined by solving
the eigenvalue problem associated with the homogeneous
part of Eq. (25). For computational purpose, the homogeneous
part of Eq. (25) is often rewritten in the first order state
vector form

Qi(X, t) =Q~(X)cos Qt + Qf(X) sin Qt (22)
h=Ah (26)

where
where

Qg(X)=~p,4eeg(-1, 0, -1, O. O. O. 0, O}T

QX(X) = ~ p,4efg{O, 0, O. O. 1, O. 1, O)T.

A=[ - MS' (~s+QGS) -M"'(KS+QD S -S2'N S)]
o ..

h={qS, qS)T.

The gravity force causes the second order vibration. Here the
degree of asymmetry of finite shaft element is defined as

For an assumed solution form, h= ho e Al
, the associated

eigenvalue problem becomes

(23) (A--,l])ho=O. (27)

where pg and pi/{ are the mass moments of inertia of the
finite shaft element about the principal axes of the cross
section.

The eigenvalues are normally found in the form

(28)

2.3 Bearings
The equation of motion of an isotropic bearing as it whirls

about its steady state position is assumed to be represented,
in rotating coordinates, by

where Wr is the whirl speed relative to rotating coordinates.
The complex conjugates of Eq. (28) also become the
eigenvalues of Eq. (27). Therefore the whirl speeds referred to
stationary coordinates are given as

Cbqb+ (Kb+S2Db) qb= Qb (24) ±wr+S2. (29)

4. MODAL TRANSFORM

The eigenvalue problem of Eq. (30) gives undamped whirl
speeds along the given whirl ratio 6.

When the damping is negligibly small, the eigenvalue
becomes a pure imaginary, that is, ,IT= jw r. If Wr= 6Q, where
6 is the whirl ratio, Eq. (25) can be rewritten as

The eigenvalue problem of Eq. (25), when the dampings,
gyroscopic moments and the cross coupled terms of mass and
stiffness matrices are not considered, becomes the simple
eigenvalue problem of the form

(30)[.Q' (6'M S
- j6G s+ N S

) - KS]qZ=O.

Cb=[ C c~z], K b=[ k kyz]
- cyZ c. - kyz k

Db=[cvZ -c], qb=(Y, Z}7
C CYZ

where

3. SYSTEM EQUATION

and k(=kyy=kzz ), kyz(=-kzy ), c(=cyy=czz) and Cyz(=
CZy ) are the spring and damping coefficients of the

isotropic bearing, respectively. Superscript b denotes the
bearing. For anisotropic bearings, Eq. (24) will contain peri­
odic coefficients, resulting in parametrically excited equation
of motion.

The assembled system equation of motion in rotating (31a)
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From the simple eigenvalue problems of Eqs. (31a) and (31b),
the lowest r eigenvalues and the corresponding real
eigenvectors are easily obtained, satisfying the orthogonality
conditions

The static force developed by gravity bends the asymmetrical
rotor system twice per revolution so that the corresponding
response attains the significant amplitude at about half the
major critical speeds. In rotating coordinates, the force due to
the weight of the rotor is of the form

Thus the steady state response due to rotor weight may be
expressed as

,p;m.vY,py=Irxr
,py~(kyy-Q'myy) ,py=Ay pr
,pZmzz,pz=Irxr
,pZ(k",-Q'mzz),pz=Az pr.

Let us define the transformation matrix rPN x, r such as

where

,p=[,p,"y 0 ]
o ,p",

(31b)

(32)

(33)

unbalance response is given by

Q%= Qkos !2t + Qffsin Qt

q;= qkos Qt+ qffsin Qt.

Substitution of Eq. (38) into Eq. (25) yields

(36)

(37)

(38)

(39)

and ~x is the 2r x 1 reduced state vector. Substituting Eq. (33)
into Eq. (25) and premultiplying by rP T yields

(34)

where

mS=,pTMS,p, CS=,pT(CS+QGS),p
k"=,p T(K s +!2D s -Q'NS),p.

Eq. (34) is the reduced order dynamic equation approximately
representing the lowest 2r modes of the general asym­
metrical rotor-bearing system. To evaluate the whirl speeds
and mode shapes for various spin speeds, the new transforma­
tion matrix has to be evaluated for each spin speed because
of the presence of the spin speed dependent coefficients in Eq.
(31). But the transformation matrix for a given spin speed can
be used as the Ritz basis vector for the neighboring spin
speeds without causing severe errors. For the some increment
of spin speed, D. Q, to the given spin speed, Qo, the new
eigenvalue problem at Q 0 + D. Q may be constructed as, with
fair accuracy,

(35)

where

D.CS= D.Q,pTGS,p,
D. k S =,p T[D. QVS - (D. Q'+2 D. QQo ) NSj,p

and ,p is the transformation matrix evaluated at the spin
speed QQ'

5. FORCED VIBRATIONS

The forced vibrations of an asymmetrical rotor system
with isotropic bearings are often caused by the small defects
such as the initial bend and lack of mass balance that are
inevitably present in any rotors and the weight of the rotor
itself. Since the force due to unbalance is a constant relative
to rotating coordinates, the unbalance response is also a
constant relative to rotating coordinates. From Eq. (25) the

where

qC=q~+jqff, QC=Q~+jQff.

From Eqs. (36) and (39) the forced response is then described
by

(40)

The displacement of the rotor, qS, in rotating coordinates can
be easily expressed in stationary coordinates by using the
orthogonal transformation.

6. NUMERICAL EXAMPLES

In order to demonstrate the accuracy of the finite element
model, a uniform asymmetrical shaft supported by isotropic
bearings at both ends is considered to determine the whirl
speeds and major critical speeds. The data for the simulation
is taken as follows:

f = 1. 5m, ly=O. 8482 x 1O- 5 (m'),
Iz =0 .1188 X 10-' (m'), A = o. 0113l(m'),
p=7806.0kg/m3

, E=2.078xI01I N/m',
kO=0.2089xl08 (N/m) at x=O
k'=0.4178xI08 (N/m) at x=l

The exact solutions are obtained by the analytical method
which treats the rotor system as a distributed parameter
system whose motions are described by partial differential
equations(jei and Lee, 1987a). The system is modeled by five
finite shaft segments and two discrete bearings. The shear
deformations are not considered in this case. When the spin
speed is 15000rpm, the whirl speeds relative to rotating
coordinates, Wr, are given in Table 1. The whirl speeds
referred to stationary coordinates can be obtained by using
the relation of Eq. (29).

At the major critical speeds where the whirl speeds coin­
cide with the spin speeds, the whirl speed, Wr, relative to
rotating coordinates vanishes. It is necessary, therefore, to
assume a solution qS= q;; = constant to obtain the major
critical speeds. The resulting eigenvalue problem is
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Table 1 Whirl speeds (RPM) of an uniform shaft supported by
isotropic bearings

Exact F.E.l\L Error(%)

Table 3 Asymmetrical rotor configuration data
·!\lateriai'=p=r=o==p=e=rt7ie=s======~~==========

- E··~2.-078x10"N/m2. p=78060kg/m3

4599.67
5090.49

10402.4
19552.5
25178.8
27090.4
34733.2
56420.1

4594.84
5111. 91

10402.0
19552.8
25190.4
27225.6
34751.1
56557.5.__.~~---

0.105
0.421
0.004
0.002
0.046
0.499
0.052
0.244

Symmetrical shaft element
Element Length(m)

1 0.26
2 0.20
5 0.20
6 0.16
7 0.30

Radius(m)
0.0.'5
0.05
0.75
0.05
0.05

-8=T------T d

The major critical speeds of the uniform shaft are given in
Table 2. As shown in Tables 1 and 2, the results well coincide
with the exact resuIts obtained by the analytical solution
method (Jei and Lee. 1987a, lei, 1988).

In order to illustrate the effectiveness of the finite element
method developed here for general asymmetrical rotor­
bearing systems, a typical system as shown in Fig. 2 is
considered. The system model consists of seven shaft seg-

pl. (kg m')
2.6158
0.3564

I.(m')
0.9163 X10'
0.9163x 10'

ply (kg m')
2.6158
0.3564

Cyy'= czz (N sec/m)
0.18X10'
0.18x10'

l).(m')
0.6.'545 X10-'
0.6545 X10-'

pIx (kg m')
3_9237
0.6207

kYY'=!<zz(N/m)
0.33 X10'
0.33 X10'

Mass(kg)
196.2
55.1S

Asymmetrical shaft element
Element Length(m)

3 0.44
4 0.44

Rigid disk
Location

1
8

Bearing
-Node

2
7

ments, two rigid disks and two discrete bearings. The shear
deformations are considered in this case. The system configu­
ration data are listed in Table 3. Since the modes for the use
of the basis vectors of modal transform are obtained without
considering the velocity dependent coefficient, C S +QG s , the
modal transform using the lowest r modes as basis vectors
causes the modal truncation errors. When the spin speed, Q,
is 20000 rpm, Table 4 shows the damped whirl speeds and
logarithmic decrement, defined as -- 27[0 r/ (JJr, in rotating
coordinates with the various levels of modal truncations. As
shown in Table 4. the modal truncation errors rapidly con­
verge to zero as the number of used modes increases. The
undamped whirl speeds obtained using Eq. (30) are shown in
Fig. 3. The lowest 6 modes are used for the modal transform.
As discussed in lei and Lee(l987b) the curve veerings in the
eigenvalue occur as shown in Fig_ 3. The undamped major
critical speeds of this system are given in Table 5.

(4lJ

Error(%)
0.006
0.005
0_031
0.02.'5
0.104
0.089
0.376
0.369

Fig-. 2 General asymmetrical rotor system

(K S
--- !2'N S

) qJ=O.

Table 2 Critical speeds (RPM) of an uniform shaft supported by
isotropic bearings

.===;c;==~===;====o::--._-----

Exact F.E.M.
~-~-4-3-67-.8-8- ~~4~36~'-14~~--+

4722.96 4723.19
10268.9 10272.1
10582.7 10585.3
19385.2 19405.4
21229.7 21248.6
40161.6 40312.8
47011.0 47184.5

--~~---~~~--~~--~~-'----~-----------

Table 4 Wh~rl speeds of the multiple shaft rotor-~earing system.s, in rotating ~oordi~lates

Full(r= 14) r 10 r==8
3133.55/0.1604EtO 3113.48/0.1604Et-O 3113.47/0.1605E+O

129891/0.1097E-3 12988.9/0.1124E-3 12986.9/0.1612E-3
1.'5543.7/0.2842E-1 15544.1/0.2840E--I 1.'5549.3/0.2762E--l
16048.1/0.1516E-1 16047.9/0.1517E-I 16047.7/0.1515E-1
17229.8 /O.7069E-2 17229.8/0.7070E-2 17229.6 /0.7055E-2
217:19.8 /O.8733E -3 21740.0 /O.8733E- 3 21744.3/0.S6.'52E-3
23388.6 /0. 7736E - 2 23388.6 /0. 7737E - 2 23390.2 /0. 7799E 2
23890.1 /0. 6.'500E- 2 23890.5 /0. 651.'5E -- 2 23897.8 /0.64 79E -- 2
24742.7/0.3460E-l 24744.2 .3460E--I 24748.7 .3416E-I

17100.8/0.8165E 2
22854.3/0 ..'5978E -- 2
23920.3/0. 1063E - 1

15942.2/0.1642E-1

17107.8 /O.7924E--2
22835.7 /0. 5638E -- 2
23873.4 /0.9756E-2

r 6 r=4 r 2
3112.03/0 .1609E +- 0 3075.59/0 . 1581E-'- 0

12923.8 /O.4004E-3 12613.5 /0.2560E-3
15663.3 /O.243·JE 1 15957.7 /O.I.'56SE 1
16036.5 iO .1507E-l
17228.3 /0. 7033E - 2
21767.1 /0.8841E-3
23401.9 /0.7923E-2
24102.5 /0. 7076E - 2

---~----- ------~----~~---------- ----~----(RI\l\~f)
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(RPM)

Fig-.:3 \~';hirl speeds of general asymmetrical rotor system
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APPENDIX
Element Matrices of Finite Shaft Element
The equation of the finite shaft element can be written as

follows:

(8-1)

where

When the principal axes of the cross section are not coinci­
dent with the" b" and" c" axes of the body attached coordi­
nates, Oabl' , Eq. (B-1) is transformed as

where the orthogonal transformation matrix Q is given as

(-J TMeQij" + QQ TC "(.jq "
+ (-J T (K e .. S2' N e) Qq,e = Q TQe (B-2)

B. Shape Functions and Element Matrices of Shaft
Element

Since the shaft is asymmetric in stiffness, the transverse
shear effect of each principal plane is different. The trans·

. - -h ff . ()vy I' '. - 12E1z d hverse sear e ect lJ1 /\ pane IS 'Pz- k'Ac;(:" an t e

transverse shear effect in OXZ plane is 'PY=k~~1fff2'
Q c,,[I cos 0

I sin 0
- I sin OJ

I cos 0
(B-3)

Shape Functions

!II Shape Functions for TranslatiQl1s

where I is the 4x 4 identity matrix, and 0 is the relative
orientation angle between the principal axes of the cross
section and the" b" and" c" axes of the body attached coordi­
nates.

The element matrices of Eq. (B-1) are given as follows:

where

sym

sym

156 22(: 54
4{:' 13(:

156
~ :~J~2]

--22(:

4t'

294 38.5(: 1.26 -31.;j(:.J
7/" :n.5(: -7/"

sym 294 38. ;jt
It'

140 17.5(: 70 -17.5(:
3.5t:' 17.5(: -3.5t:'

140 -17.5(:
3.5t'

where

where

:2) Shape Functions for Rotations

c,-, ()() I••" CZi (X) I• •y = i~~ [ct, (X) + 'PC" C'<)]

and the subscripts band s denote the bending and shear
deformations of a Timoshenko beam, respectively.

and

where

a~·~r
36 3t -36

"1U' -3t t:'
sym 36 -- 3t

4t:'
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and

-15£ ° -15£ I
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° 15£
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hO _ [12 ~~, =~~ ~~,]
12- sym 12 -6e'

4£2

hi _[ ° ~2 ~ -0°£2]
12- sym 0

£'

and the equivalent unbalance force

where

a~= a?2, a~= UIz

[ 147
21£ 63

"']1_ 17.5 3.5e' 17.5£ -3.5e'
Us- 63 14£ 147 -21£

-17.5£ -3.5£' -17.5£ 3.5e'

and

where


